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Abstract. We study the magnetic field dependence of the dielectric response of large cylindrical molecules
such as nanotubes. When a field-induced level crossing takes place, an applied electric field has two effects:
it may cause a linear instead of the usual quadratic Stark effect or the difference in the quadratic Stark
coefficient of the two levels leads to a discontinuity in the polarization. Explicit calculations are performed
for doped nanotubes and a rich structure in the real part of the low-frequency dielectric function ε′(H) is
found when a magnetic field is applied along the cylinder axis. It is suggested that studies of ε′(H,T ) can
serve as a spectroscopic tool for the investigation of large ring-shaped or cylindrical molecules.

PACS. 77.22.-d Dielectric properties of solids and liquids – 78.40.Ri Fullerenes and related materials –
75.20.-g Diamagnetism and paramagnetism – 73.23.-b Mesoscopic systems

1 Introduction

During the last years considerable progress has been made
in precise measurements of the real part of the low-
frequency dielectric function ε′(ω). In particular those
measurements could be extended to ultra-low tempera-
tures, i.e., down to a few mK. Ratios of δε′/ε′ up to
10−7 were achieved in that temperature regime. A rather
spectacular success associated with that progress was
the observation of a strong magnetic-field dependence of
the polarizability of multicomponent glasses in the mK
regime [1,2]. This development suggests reconsideration of
magnetic field effects on ring molecules or related struc-
tures like nanotubes. That a magnetic field can have a con-
siderable effect on the polarizability of an electron system
was pointed out in [9–11] where small metallic particles of
various shapes, e.g., spheres, disks and rings were studied
in connection with weak localization phenomena. We want
to point out here that the magnetic field effect is particu-
larly large when large ring molecules or nanotubes are con-
sidered. In both cases an applied magnetic field induces a
diamagnetic ring current. Due to this current the energy
of the ground state increases quadratically with the ap-
plied magnetic field. This continues until one of the excited
states which lowers its energy in a field crosses the ground-
state and becomes the new ground state. At the crossing
point an applied electric field may cause a linear Stark
effect, instead of the usual quadratic one and hence a di-
vergent electric polarizability may result. This assumes a
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finite matrix element of the perturbation between the two
crossing levels. But even when this matrix element is zero,
a difference in the coefficient of the quadratic Stark effect
for the two levels leads to a discontinuity in the dielectric
response. The physical origin of the crossover is easily un-
derstood. An excited state carrying a ring current in the
absence of a magnetic field becomes a state without a ring
current, when a sufficiently high magnetic field is applied,
because the induced current may cancel the original one.
When this is the case the energy of that state equals the
one of the ground state in the absence of a field. This sim-
ple argument shows that the ground-state energy is a pe-
riodic function of an applied magnetic field. The periodic-
ity is given by the flux enclosed by the ring current. When
one flux quantum φ0 = hc/e is penetrating the ring the
ground-state energy has returned to its original value. It
is well known that a huge field of order 105 T is needed for
a flux quantum φ0 to penetrate a benzene molecule con-
sisting of a ring of six carbon atoms. Because of that large
value of the magnetic field, effects of it on ring molecules
have obtained only little attention in the past [3,4].
The purpose of the present paper is to point out that the
situation has changed considerably. Not only has there
been experimental progress in performing high precision
measurements of ε′ at low temperatures, but also the syn-
thesis of organic structures has made impressive advances.
For example, nanotubes of large circumference have been
produced, lowering the field required for the enclosure of
a flux unit. In this paper we want to demonstrate that
a measurement of ε′(H,T ) should provide important in-
formation on the electronic excitations of ring molecules,
in particular on level crossings. As a first step, we calcu-
late here the dielectric response of a molecule consisting
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of a square lattice, e.g., of carbon sites bent into a cylin-
drical form and of a nanotube, i.e., a bent honeycomb
lattice. Various extensions of the work presented here will
follow later.

The magnetic and electric field are assumed to be di-
rected along the cylindrical axis. The electron interactions
are assumed to be included in effective one-electron pa-
rameters like in an extended Hückel theory or in the quasi-
particle theory of Landau. In a subsequent investigation
we shall include the electronic interactions more explicitly
than done here. This may have profound effects on the re-
sults. A rich structure in ε′(H,T ) is obtained which should
be experimentally observable. It is closely related to the
low-energy excitations of the systems in an applied mag-
netic field and in particular to level crossings as the field
changes. Although our findings are limited here to the
cylindrical structures described above, they suggest de-
tailed experimental studies of ε′(H,T ) for ring molecules.

In order to explain the main features of ε′(H,T ) we
consider first a single ring of N sites in a magnetic field
along the ring axis. The Hamiltonian is

H = t
N−1∑
n,σ

(a+
(n+1)σ anσ e

2πiφ
N + h.c.) (1)

where a+
nσ, anσ are electron creation and annihilation op-

erators and φ is the magnetic flux through the ring
in units of the flux quantum φ0. The resulting energy
eigenvalues are

ε(q) = 2t cos
[

2π
N

(q + φ)
]
, q = 0,±1,±2, ... (2)

The ground-state energy Eg is periodic in the flux, i.e.,
Eg(φ+ 1) = Eg(φ). More explicitly when φ ≤ 1

2 we write
for Eg

Eg(φ) =
∑
occ

2t
[
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q

)
cos
(
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)
−sin
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)
sin
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For a closed-shell system, i.e., for an electron number
Ne = 4n+ 2, where n is an integer we find that∑

occ

sin
2π
N
q = 0. (4)

In that case the field-dependent contribution to the
ground-state energy is

δEg(φ) =
∑
occ

2t cos
(

2π
N
q

)(
cos
(

2π
N
φ

)
− 1
)

= −Eg(0)
(

1− cos
(

2π
N
φ

))
. (5)

For large N we may expand this expression and obtain

δEg(φ) = −Eg(0)
2π2

N2
φ2 > 0 (6)
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Fig. 1. Lowest three eigenvalues εi (i.e., ground-state energy
and first and second excited state) for a ring of Ne electrons
(see text) as function of flux φ through the ring (in arbitrary
units). The energy ratio of the second excited state and the
ground state is independent of flux.

for φ ≤ 1
2 . When φ = 1

2 the ground state is twofold degen-
erate because of a level crossing at that point. For φ > 1

2 ,
the expression (3) is replaced by

δEg(φ) = −Eg(0)
2π2

N2
(1− φ)2,

3
2
> φ >

1
2
· (7)

The behaviour of δEg(φ) is schematically shown in
Figure 1. The contribution of δEg(φ) to Eg(φ) is very
small for large values of N and hardly detectable. This
does not hold true though for other quantities. For exam-
ple, when in addition an electric field is applied perpen-
dicularly to the ring axis its effect on the ground-state en-
ergy is strongly dependent on φ. For φ = 1

2 we are dealing
with a linear Stark effect instead of a quadratic one when
φ 6= 1

2 . Therefore the dielectric constant has a singularity
at that particular value of φ. This simple example sheds
light onto the physical reason why the dielectric function
can be so sensitive to an applied magnetic field. The same
feature is found for cylindrical molecules which are subject
of this paper.

2 Magnetic-field dependence of the free
energy

In order to demonstrate the influence of an applied mag-
netic field H on the free energy we consider two differ-
ent systems. One is a model square lattice rolled into the
form of a cylinder. The other one is a nanotube which con-
sists of a honeycomb lattice rolled into a cylinder in the
same way.

We start with the square lattice forming a cylinder.
It consists of N atoms along the perimeter and of M
atoms along the cylindrical axis z. The eigenvalues depend
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on the flux φ through the cylinder and are of the form

εpqσ = −cos
[

2π
N

(p+ φ)
]
− t cos

[
2π

M + 1
q

]
+2π2 meffσ

m

φ

N2
· (8)

The first term corresponds to a transfer integral of size
− 1

2 along the perimeter and the second to one of magni-
tude − t

2 along the z-axis. The parameters p and q take
the integer values p = 1, ..., N and q = 1, ...,M , respec-
tively. The last term is the Zeeman contribution which is
expressed here in terms of the flux φ. Since the latter is
in units of the flux quantum φ0, the ratio of the effective
massmeff divided by the electron massm enters here, with
the former referring to an electronic motion perpendicular
to the z-axis. Furthermore, σ = ±1. The free energy of the
system is of the usual form

βF = −
∑
pqσ

ln[1 + exp(−β(εpqσ − µ))] (9)

where β = (kBT )−1 and µ is the chemical potential. It is
determined by expressing the number of electrons Ne in
terms of it, i.e.,

Ne =
∑
pqσ

1
exp[β(εpqσ − µ)] + 1

· (10)

In practice we calculate µ by first choosing an approx-
imate value µ0 and calculating the corresponding value
N

(1)
e . The correction δµ0 to µ0 can then be determined

from

δµ0 = − 1
β

ln

(
1 +

N
(1)
e −Ne

a(T )

)
· (11)

This expression is more convenient for numerical cal-
culations than its linearized version in (N (1)

e − Ne)/a(T )
where the function a(T ) is given by

a(T ) =
1
4

∑
pqσ

cosh−2

(
β

2
(εpqσ − µ0)

)
. (12)

One can use the corrected potential µ1 = µ0 + δµ0

in order to calculate the next correction δµ1. We obtain
with δµ1 the chemical potential already with an accuracy
of order N−2M−2, which perfectly serves our purposes.

The same procedure can be applied to carbon nan-
otubes. In that case the unit cell contains four carbon
atoms. Hence the excitation energies form four bands, i.e.,

εpqσ(φ) = ±
(

1 + up ± (upvq)
1
2

) 1
2

+ 2π2meff

m

σφ

N2
(13)

with

up = 2
(

1 + cos
[

2π
N

(p+ φ)
])

vq = 2
(

1 + cos
[

2π
M + 1

q

])
(14)

and p = 1, ..., N ; q = 1, ...,M [5,6].

3 Induced dipole moment

When an electric field is applied along the z-axis the ex-
citation spectrum of the system can no longer be calcu-
lated exactly. Instead, approximations have to be made.
Since in practice the applied electric field is very small,
the density of electrons changes only slightly along the
z-axis. This enables us to determine the induced density
changes by using a quasi-classical approximation. Within
that scheme the excitation energies depend not only on
p, q and σ but on the coordinate z as well. We illustrate
the approximation by considering a chain of M atoms as
a simple example. The Hamiltonians is of the form

H1d = −
M−1∑
n=1,σ

(a+
(n+1)σanσ + h.c.)

+ ea0F0

∑
nσ

a+
nσanσ

(
n− M + 1

2

)
· (15)

Here a0 is the lattice constant and F0 is an applied
electric field along the chain direction.

Exact calculations of the induced dipole moment D
require an evaluation of the expression

D =
Sp d̂ e−β(H1d−µ)

Sp e−β(H1d−µ)

=
M∑

k=1,σ

(d̂)kk
1 + eβ(Ekσ−µ)

· (16)

Here d̂ is the dipole operator

d̂ = ea0

M∑
n=1,σ

a+
nσanσ

(
n− M + 1

2

)
(17)

and Ekσ denotes the excitation energies of the chain. In
order to compute D from (16) we have to diagonalize H1d

in order to find the eigenenergies and eigenfunctions of
that Hamiltonian. This can be done if not more than 1 000
atoms are involved. Instead of doing that we want to use
here a simpler, more effective quasi-classical scheme. In
the quasi-classical approximation the excitation spectrum
is of the form

εpm = −2cos
[

2π
M + 1

p

]
+ ea0F0

(
m− M + 1

2

)
(18)

with p = 1, ...,M and m = 1, ...,M . The corresponding
expression for the induced dipole moment is

D =
2ea0

M

∑
pm

(m− (M + 1)/2)
eβ(εpm−µ) + 1

· (19)

It should be pointed out that the quasi-classical ap-
proximation neglects matrix elements which lead to an
energy splitting at crossing points when the electric field
is turned on. Therefore a possible first-order Stark ef-
fect near those points is not taken into account and we
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Fig. 2. Induced dipole moment as a function of electrons per
site for a chain of M = 201 atoms calculated with the exact
quantum mechanical expression (16) (dashed lines) and when
a semiclassical approximation (19) (solid lines) is made. (a)
and (b) correspond to temperatures kBT = 0.01 and 0.05, re-
spectively (in units of the transfer integral).

are in the linear response regime. Despite this we have
not expanded this expression in F0 for practical reasons.
We have calculated D for a chain of M = 201 atoms by
using (16) and alternatively (18). The results are com-
pared in Figure 2 for different densities and temperatures.
The deviations caused by the semiclassical approximation
are less than 1% or 1

M in all cases. This justifies the use
of a quasi-classical approximation when we calculate the
dielectric response of cylindrical molecules such as nan-
otubes in an applied magnetic field.

4 Results and discussions

In the following we want to present results for the di-
electric response of the two types of cylindrical molecules
described above, i.e., for a square lattice rolled into a
cylinder and for nanotubes. The induced dipole moment is
calculated in close analogy to the one of a ring, although
here the electric field F0 is directed along the cylindrical
axis. We start with the square-lattice case. In analogy to
(19) the induced dipole is calculated from

D(φ) =
ea0

M

∑
mpqσ

(m− (M + 1)/2)
eβ[ε̃pqσ(m,φ)−µ(φ)] + 1

(20)

where

ε̃pqσ(m,φ) = εpqσ(φ) + ea0F0 (m− (M + 1)/2) (21)

and εpqσ(φ) is given by (8). Results for the magnetic-field
dependent part D(φ) − D(0) are shown in Figure 3 for
a cylinder with 200 atoms along the circumference and
1 000 atoms along the axis, i.e., N = 200 and M = 1 000,
respectively.
Note that (D(φ) − D(0))/D(0) = (ε′(φ) − ε′(0))/ε′(0)
where ε′ is the real part of the dielectric response in the

Fig. 3. Dielectric response [ε′(H) − ε′(0)]/ε′(0) for a model
square-lattice system with N = 200, M = 1 000 in an axial
magnetic field. The temperature is kBT = 10−4 (in units of
the transfer integral), and a0 = 1.4 Å. The density is 0.74
electrons per site.

low-frequency limit. The temperature, or more precisely
kBT is 10−4 in units of the hopping matrix element. The
chosen density corresponds to 0.74 electrons per site. One
notices a rich structure as a function of the applied mag-
netic field. The function (D(φ) −D(0))/D(0) is symmet-
rical with respect to the point φ/φ0 = 1/2. Therefore we
show in the figure the dielectric response in the region
0 < φ/φ0 . 1/2 only. The continuation of these curves
can be obtained by reflection. Adding a Zeeman term to
the Hamiltonian (1) spoils this periodicity but the corre-
sponding effect is rather small, i.e., of the order of a few
percent. The above calculations have been done without
discussions of the effect of screening, which is an impor-
tant factor and can diminish D(0) considerably. However,
it can be shown that this decrease is independent of the ap-
plied magnetic field so that the ratio (D(φ)−D(0))/D(0)
remains unchanged. A detailed proof of it is left to a future
publication.

A cylinder formed from a square lattice is a hypo-
thetical case. But if one assumes a lattice constant a0 =
1.40 Å as in the case of an aromatic carbon ring, the field
required for the enclosure of a flux unit is of order 60 T.
It is derived from the following relation between the flux
φ (in units of φ0) and the applied magnetic field

φ =
N2a2

0 eH

8π2~c
· (22)

The structure in ε′(H) obtained within that range of
fields reflects properties of excited states, in particular
crossings of energy levels.

For nanotubes the calculations are done quite simi-
larly, but here we have to take a sum over all four energy
bands. The relation between flux φ (in units of φ0) and
field H is here given by

φ =
3N2a2

0 eH

8π2~c
(23)
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Fig. 4. Dielectric response [ε′(H)− ε′(0)]/ε′(0) for a nanotube
with N = 100, M = 1 000 in an axial magnetic field. The
temperature is kBT = 10−4 in units of 3 eV and the density is
0.89 electrons per site.

where N is the number of sites along the circumference
and a0 is the distance between neighboring sites. The com-
putational results are shown in Figure 4 for a density of
n = 0.89 π-electrons per site. One notices that the rich
structure in δε′(H)/ε′(H) in the region 0 < H < 40 T is
of order unity and therefore should be easily detectable.
Results for other densities look similarly, except for n = 1
which is special. The reason is that a honeycomb or
graphite lattice has for n = 1 a Fermi surface consist-
ing of a point. Therefore in a finite system the level spac-
ing close to the Fermi energy is particularly large. This
leads to small changes in δε′(H)/ε′(0) only. The situation
changes at high magnetic fields. Due to the Zeeman term
in the Hamiltonian the spin-dependent densities nσ differ
more and more from each other, i.e., n = n↑ + n↓ with
n↑(H) 6= n↓(H) and the Fermi surface moves away from
the special point at half filling. This brings us back to
the doped case and we obtain again a rich structure in
δε′(H)/ε′(0) like in Figure 4.

In order to demonstrate that we are in the linear
dielectric response regime we have calculated (D(φ) −
D(0))/D(0) for two different electric fields F0, i.e., for
10 V/cm and 20 V/cm and found that this ratio remains
unchanged. In collaboration with S. Pleutin we have also
performed quantum calculation instead of quasi-classical
ones for the cylinder derived from a square lattice (to be
published). They support the quasi-classical approxima-
tion made here.

5 Conclusions

The above calculations show that large molecules of cylin-
drical or circular shape should show detectable magnetic
field effects due to the Bohm-Aharonov effect. They lead
to a strong variation of the dielectric function in the low-
frequency limit as function of the applied magnetic field.

Those variations are predominantly caused by doubly de-
generate ground states resulting from level crossings in the
applied field. At a crossing point an applied electric field
causes a discontinuity in the dielectric response due to the
difference in the coefficient of the quadratic Stark effect
of the two levels. It may also cause a linear Stark effect
instead of a quadratic one. In that case nonlinear elec-
tric field effects appear. However, in the quasi-classical
approximation made here these effects are neglected.
It should be pointed out that the calculated quantity
(D(φ) − D(0))/D(0) is quite sensitive to the density of
electrons, size of the system, electron correlations, tem-
perature, etc. The purpose of our investigation is to show
that the effect are very large and controllable. Once ex-
periments on these systems are done the calculations can
be extended to the requested specific situation. The most
important extensions concern the dependence of δε′(H) on
the directions of the applied magnetic and electric fields.
Important is also a proper inclusion of electron corre-
lations. As pointed out before, the present calculations
have been done within the one-electron approximation.
Strong correlations are expected to result in modifica-
tions of the dielectric response [7,8]. The magnetic field
dependence of the polarizability of a disordered system
has been considered before [9–11]. Finally, we also have
to generalize the above theory to the case of mutually
interacting molecules. This may become an important is-
sue when plate-like molecules are forming stacks and a
magnetic field is applied along the direction of the stack.
Although the work presented here needs extensions of the
form just described it is fair to state that the results pre-
sented here justify efforts towards a systematic investiga-
tion of the magnetic-field dependent dielectric response of
ring- or cylinder shaped molecules. We feel that in the fu-
ture they may develop into a spectroscopic tool for study-
ing low-energy excitations of such systems.
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